**Objective**: Given an array write an algorithm to print all the possible sub subsequences.

**Example:**

int [] a = {1, 2, 3}; Output: Possible sub sequences – {Empty}, {1}, {2}, {3}, {1, 2} ,{1,3}, {2, 3}, {1, 2, 3}

**Approach**:

- The approach will be similar to as discussed here Generate All Strings of n bits
- If we consider n= 3(same as the array size) then all possible combinations are [0, 0, 0] [1, 0, 0] [0, 1, 0] [1, 1, 0] [0, 0, 1] [1, 0, 1] [0, 1, 1] [1, 1, 1].
- So from the above combinations, wherever the bit is set to 1, place an array element at the position and wherever the bit is set to 0, ignore the array element.
- The above step will give the desired result.
- See the code below for better understanding.

**Time Complexity**: O(2^n)

**Complete Code:**

This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.

Learn more about bidirectional Unicode characters

public class PrintArraySubSequences { | |

public void printAllSubSequences(int [] arrInput){ | |

int [] temp = new int[arrInput.length]; | |

int index = 0; | |

solve(arrInput, index, temp); | |

} | |

private void solve(int [] arrInput, int index, int [] temp){ | |

if(index==arrInput.length){ | |

print(arrInput,temp); | |

return; | |

} | |

//set the current index bit and solve it recursively | |

temp[index] = 1; | |

solve(arrInput,index+1,temp); | |

//unset the current index bit and solve it recursively | |

temp[index] = 0; | |

solve(arrInput,index+1,temp); | |

} | |

private void print(int [] arrInput, int [] temp){ | |

String result = ""; | |

for (int i = 0; i <temp.length ; i++) { | |

if(temp[i]==1) | |

result += arrInput[i]+" "; | |

} | |

if(result=="") | |

result = "{Empty Set}"; | |

System.out.println(result); | |

} | |

public static void main(String[] args) { | |

int [] arrInput = {1, 2, 3}; | |

new PrintArraySubSequences().printAllSubSequences(arrInput); | |

} | |

} |

**Output:**

1 2 3 1 2 1 3 1 2 3 2 3 {Empty Set}